Computational and Experimental Investigation of Wind Tunnel Effects on Near-Wheel Device Prediction

Dr. Eric Jacuzzi, NASCAR R&D

Chris Popiela, NASCAR R&D

Tim Murphy, NASCAR R&D

Tracy Halpin, NASCAR R&D

Miguel Class, TotalSim USA

Greg Padgett, TotalSim USA

Workshop Case 1 and 2 Results (#49)

Case 1

- Steadily increasing CD from coarse to fine grids, while the moment coefficient decreased.
- CL trend inconsistent between grids.
- CS showed no change from medium to fine grids.

Case 2

- Decrease in drag and increase in total lift.
- Δ CD = -0.006 and Δ CL = 0.010
- Tire deflector showed CP decrease on the forward portion of the front tires.
- Surface pressure distribution and flowfield comparable to experimental results in [1].

Case 1 - DDES-SA								
Description C _D C _L C _S CM								
Grid 1 – Coarse Grids	0.297	-0.192	0.111	-0.108				
Grid 2 – Medium (baseline) Grids	0.332	-0.186	0.139	-0.102				
Grid 3 – Fine Grids	0.361	-0.202	0.139	-0.087				

Case 2 - DDES-SA								
Description	C _D	C_L	C_{Lf}	C_Lr	C_S			
Case 2A - Baseline	0.283	0.045	-0.058	0.104	0.020			
Case 2B - Front Wheel Deflector	0.277	0.055	-0.049	0.104	0.026			
Experimental Baseline - [1]	0.255	0.087	-0.023	0.111	-			

Computational & Experimental Setup

- Windshear, Inc. (WSI) purpose built automotive/motorsport wind tunnel.
- 180 mph open jet, single belt rolling road automotive wind tunnel in Concord, North Carolina USA.
- Lift/drag externally measured, side force measured using transducer wheels.

Windshear, Inc. (WSI)

Windshear Simulation

Boundary layer suction modeled and tuned to empty tunnel section.

Flow Survey

- Kiel probes were used to survey flow conditions based on CFD observations.
- Rakes were fixed to the vehicle in appropriate positions using as non-intrusive of mounts as possible.

Stationary vs. Moving Road

CFD vs. WSI: Stationary vs. Moving Road

CFD Results

Description	Point	YAW	CD	CL	CLF	CLR	L\D	Lift Balance
	1	0.0	0.495	-0.471	-0.052	-0.419	-0.95	10.96%
RANS Freestream	2	0.0	0.484	-0.316	-0.010	-0.306	-0.65	3.25%
	Delta - Stationary Road		-0.011	0.155	0.042	0.113	0.30	-7.71%
	1	0.0	0.534	-0.552	-0.097	-0.456	-1.04	17.50%
DES Freestream	2	0.0	0.531	-0.400	-0.049	-0.351	-0.75	12.28%
	Delta - Stationary Road		-0.003	0.152	0.048	0.105	0.28	-5.22%
RANS WSI	1	0.0	0.535	-0.491	0.028	-0.519	-0.92	-5.74%
	2	0.0	0.523	-0.377	0.057	-0.434	-0.72	-5.70%
	Delta - Stationary Road		-0.012	0.114	0.029	0.085	0.020	0.04%

WSI Tunnel Results

-0.013

Delta - Stationary Road

Description

Wind Tunnel

Notes

- Point 1 = moving wheels and road
- Point 2 = stationary wheels and road
- All runs at 140 kph windspeed, 165 mm ride height.
- WSI minimum road speed 4.8 kph

Results Discussion

L\D **Lift Balance Point YAW** CL CLF CLR CD -0.463 -0.075 -0.388 -0.883 16.23% 1 0.0 0.524 0.0 0.511 -0.369 -0.046 -0.323 -0.758 12.47%

0.029

0.069

0.125

-3.76%

0.094

- All simulations predict a drag decrease and lift increase with approximately 2/3 occurring on rear.
- WSI RANS most accurate vs. experimental.
- Delta lift magnitude is over-predicted.

2.0e-01

0.15

CFD: Flowfield Effects – Stationary Road vs. Moving

- Reduced energy due to missing inboard tire squirt and stationary road results in decreased diffuser velocity.
- CP decrease at front of car and particularly dramatic in the diffuser section.

Tire Squirt – Kiel Probe Measurements

- Predicted loss of tire squirt was measured between moving and stationary road conditions.
- Delta CP Total was observed to be lower in the rake area shown and was more pronounced for yawed case possibly due to upstream body effects.

Diffuser Pressure Taps – Road Effects

- Diffuser pressure taps show decrease in negative CP with stationary road as anticipated.
- Corresponding downforce loss is accounted for.

Tire Deflector Prediction

Front Wheel Air Deflector Geometry

- Vehicle parameters were scaled in reference to the DrivAer model:
 - Ride Height (6.5"/165 mm)
 - Deflector Dimensions (50% tire coverage)

Front Tire Air Deflector Effects

- Both the DrivAer and Next Gen model show a CP decrease at the front tire when using the front wheel air deflector.
- Both stationary and moving wheels/floor show similar CP results in the Next Gen model.
- For the Next Gen, note the CP decrease inboard of the front tires with deflector.

Stationary Wheels/Floor

Moving Wheels/Floor

Deflector On

CFD Results

Description	Point	YAW	CD	CL	CLF	CLR	L/D	Lift Balance
Baseline (RANS)	1	0.0	0.495	-0.471	-0.052	-0.419	-0.95	10.96%
(Freestream)	2	0.0	0.484	-0.316	-0.010	-0.306	-0.65	3.25%
Deflector (RANS)	1	0.0	0.486	-0.492	-0.067	-0.424	-1.01	13.70%
(Freestream)	2	0.0	0.494	-0.311	0.000	-0.310	-0.63	0.14%
Delta - Def	lector, Moving	Road	-0.009	-0.021	-0.015	-0.005	-0.060	2.73%
Delta - Defle	ctor, Stationar	y Road	0.010	0.005	0.010	-0.004	0.024	-3.11%

Description	Point	YAW	CD	CL	CLF	CLR	L\D	Lift Balance
Baseline (DES)	1	0.0	0.534	-0.552	-0.097	-0.456	-1.04	17.50%
(Freestream)	2	0.0	0.531	-0.400	-0.049	-0.351	-0.75	12.28%
Deflector (DES)	1	0.0	0.528	-0.543	-0.075	-0.467	-1.03	13.89%
(Freestream)	2	0.0	0.536	-0.384	-0.031	-0.353	-0.72	8.07%
Delta - Def	Delta - Deflector, Moving Road			0.009	0.022	-0.011	0.006	-3.62%
Delta - Defle	ctor, Stationar	y Road	0.005	0.016	0.018	-0.002	0.038	-4.22%

Description	Point	YAW	CD	CL	CLF	CLR	L\D	Lift Balance
Baseline (RANS)	1	0.0	0.535	-0.491	0.028	-0.519	-0.92	-5.74%
(WSI)	2	0.0	0.523	-0.377	0.057	-0.434	-0.72	-5.70%
Deflector (RANS)	1	0.0	0.525	-0.516	0.014	-0.530	-0.98	-2.66%
(WSI)	2	0.0	0.539	-0.356	0.063	-0.419	-0.66	-17.55%
Delta - Deflector, Moving Road		-0.010	-0.025	-0.015	-0.010	-0.07	3.08%	
Delta - Deflecto	Delta - Deflector, Stationary Road			0.021	0.006	0.015	0.06	-11.85%

Notes

- Point 1 = moving wheels and road
- Point 2 = stationary wheels and road

Results Discussion

RANS and **DES** freestream with deflector:

- Drag reduction with moving road
- Lift result divergent between RANS/DES
- Lift difference focused on CLF
- Drag and lift increase with stationary road

WSI RANS simulation:

- Nearly the same for the freestream RANS case.
- Higher lift increase in the stationary road condition when using the tire deflector.
- Drag in either configuration closer to wind tunnel.

Wind Tunnel Results

Description	Point	YAW	CD	CL	CLF	CLR	L\D	Lift Balance
Baseline	1	0.0	0.524	-0.463	-0.075	-0.388	-0.883	16.23%
Daseille	2	0.0	0.511	-0.369	-0.046	-0.323	-0.758	12.47%
Deflector On	1	0	0.521	-0.469	-0.071	-0.399	-0.9	15.10%
Deflector On	2	0	0.515	-0.36	-0.038	-0.322	-0.734	10.57%
Delta - Def	Delta - Deflector, Moving Road		-0.003	-0.006	0.004	-0.011	-0.017	-1.13%
Delta - Deflector, Stationary Road		0.004	0.009	0.008	0.001	0.024	-1.90%	

- WSI reported decrease in drag/lift with moving road for deflector, increase in drag/lift with stationary road.
- Comparing to CFD, magnitudes are smaller.
- Freestream DES incorrectly predicted moving road CL.

CFD Summary

Deflector On, Moving Road						
Description	CD	CL				
Freestream - RANS	-0.009	-0.021				
Freestream - DES	-0.006	0.009				
Windshear - RANS	-0.010	-0.025				
Windshear - Experimental	-0.003	-0.006				

Deflector On, Stationary Road						
Description	CD	CL				
Freestream - RANS	0.010	0.005				
Freestream - DES	0.005	0.016				
Windshear - RANS	0.016	0.021				
Windshear - Experimental	0.004	0.009				

Diffuser Pressure Taps – Deflector Effects

- Deflector with moving road shows an increase in negative CP in the diffuser when compared to baseline.
- Results in a corresponding rear downforce increase due to higher energy flow directed inboard.

Conclusions

- NASCAR investigated the effect of freestream, wind tunnel, and rotating vs. non-rotating road/wheels between CFD and experimental results.
- Stationary road/wheels eliminates tire squirt, increases drag, and increases lift.
- Stationary road/wheels gives contradictory results for the deflector as compared to a moving road/freestream simulation or experiment.
- WSI RANS simulations closely resemble predictions from freestream RANS simulations and experiment.
- WSI modeling for stationary floor increased accuracy; moving floor decreased accuracy.

