AutoCFD3

Barcelona Supercomputing Center

Case statistics

models

Spectral elements code in GPU

Conclusions and future

Towards data driven reduced order models for the automotive industry

B. Eiximeno, S. Gómez, H. Owen, O. Lehmkuhl

23rd September, 2022

Barcelona Supercomputing Center Centro Nacional de Supercomputación

AutoCFD3

Barcelona Supercomputing Center

Case statistic

Spectral elements code in GPII

Conclusions and future work

MareNostrum5: a new EuroHPC world-class supercomputer in Spain

16 June 2022

The procurement contract of MareNostrum 5, a new EuroHPC pre-exascale supercomputer, has been signed by the European High Performance Computing Joint Undertaking (EuroHPC JU) and the company Atos, the selected vendor.

AutoCFD3

Barcelona Supercomputing Center

Case statistic

Spectral elements code

Conclusions
and future

1 Case statistics

2 Reduced order models

3 Spectral elements code in GPU

AutoCFD3

Barcelona Supercomputing Center

Case statistics

case statistic

Spectral elements code

Conclusions
and future

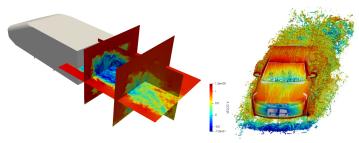
1 Case statistics

2 Reduced order models

3 Spectral elements code in GPU

Case statistics

Case configuration


AutoCFD3

Barcelona Supercomputing Center

Case statistics

Wall modelled LES of the Windsor body and the Drivaer

- FEM with fractional step method solver.
- Vreman LES model.
- Reichardt wall law (exchange location at the 4th node).
- 4th order Runge-Kutta time integration.

Case statistics

Results

AutoCFD3

Barcelona Supercomputing Center

Case statistics

Reduced order

Spectral

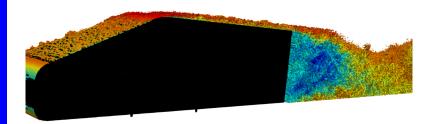
elements code in GPU

Conclusions and future

Windsor body and Drivaer results

Windsor body

$$C_D = 0.34 - C_{D_{EXP}} = 0.3298$$


$$C_L = -0.16 - C_{L_{EXP}} = -0.033$$

$$C_S = 0.15 - C_{S_{EXP}} = 0.1345$$

Drivaer

$$C_D = 0.25 - C_{D_{EXP}} = 0.2546$$

$$C_L = 0.028 - C_{L_{EXP}} = 0.0874$$

AutoCFD3

Barcelona Supercomputing Center

Case statistics

Reduced order

models

Spectral elements code

in GPU

Conclusions and future 1 Case statistics

2 Reduced order models

3 Spectral elements code in GPU

Definition

AutoCFD3

Barcelona Supercomputing Center

Case statistic

Reduced order models

Spectral elements code in GPU

Conclusions and future work

What are they?

- Data driven decompositions
- Any physical background
- Useful in complex datasets

Why should we use them?

- Flow field analysis
- Data storage and reconstruction
- Time interpolation
- Interpolation between different conditions (i.e. yaw angle)

Definition

AutoCFD3

Barcelona Supercomputing Center

Case statistic

Reduced order models

Spectral elements code in GPU

Conclusions and future

Proper orthogonal decomposition (POD):

Decompose a field in:

- Temporal coefficient
- Spatial distribution POD modes

$$F(X,t) = \sum_{i=1}^{i=N} a_i(t)\Phi_i(X)$$
 (1)

Decomposition ranked by energy:

$$E_1 > E_2 > ... > E_{N-1} > E_N$$

Definition

AutoCFD3

Barcelona Supercomputing Center

Case statistics

Reduced order

Spectral elements code

models

Conclusions and future

Dynamic mode decomposition (DMD):

Linearize a dataset \mathcal{D} of N flow fields:

$$\mathcal{D}_1^N = [d_1, d_2, d_3, ..., d_N]$$
 (2)

$$\mathcal{D}_1^N = \left[d_1, Ad_1, A^2d_1, ..., A^{N-1}d_1 \right]$$
 (3)

Compute spatial correlations which have a:

- Frequency
- Damping ratio
- Amplitude

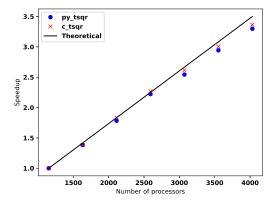
10/25

Performance

AutoCFD3

Barcelona Supercomputing Center

Case statistic


Reduced order models

Spectral elements code in GPU

Conclusions and future

Implementation based on single value decomposition (SVD):

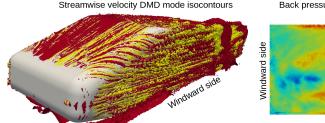
Algorithm which computes it at 70M points in 3.7 seconds

Flow field analysis

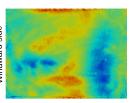
AutoCFD3

Barcelona Supercomputing Center

Case statistic


Reduced order models

Spectral elements code


Conclusions and future

How does velocity affect the back pressure?

Fluctuations at St = 0.35 (highest amplitude)

Back pressure DMD mode

Data storage and reconstruction

AutoCFD3

Barcelona Supercomputing Center

Case statistics

Reduced order models

Spectral elements code in CPU

Conclusions and future

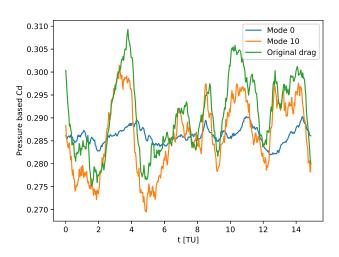
Reduction to the most meaningful modes

- Less space needed for storage (from 275GB to 6.9GB)
- Flow well captured
- Easy to reconstruct

10 modes Original flow

Data storage and reconstruction

AutoCFD3


Barcelona Supercomputing Center

Case statistics

Reduced order models

Spectral elements code in GPII

Conclusions and future

Yaw angle interpolation

AutoCFD3

Barcelona Supercomputing Center

ase statistics

Reduced order

Spectral

models

Spectral elements code in GPU

Conclusions and future work

Can we predict the back pressure at another yaw angle?

- Are there any modes related with the windward vortex?
- What happens if we give them an arbitrary contribution?

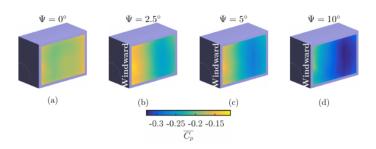
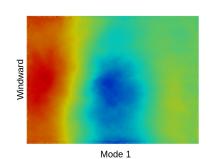
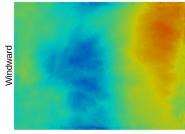


Figure: Extracted from Max Varney 2019

Yaw angle interpolation

AutoCFD3


Barcelona Supercomputing Center


Reduced order models

The two most energetic pressure POD modes:

Reproduce the windward vortex effect:

$$P(\delta) = P_{\delta=2.5^{\circ}} + S_1(\delta)M1_{\delta=2.5^{\circ}} + S_2(\delta)M2_{\delta=2.5^{\circ}}$$
 (4)

Yaw angle interpolation

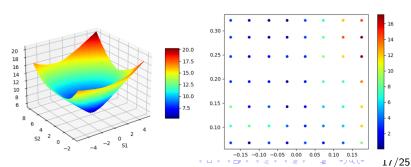
AutoCFD3

Barcelona Supercomputing Center

Case statistic

Reduced order models

Spectral elements code


Conclusions and future

Computation of S_1 and S_2

- \blacksquare Error minimisation at $\delta=5^\circ$ and $\delta=10^\circ$
- Usage of experimental data
- lacktriangle Mean error of 5.3 % at $\delta=5^\circ$ and 14.64 % at $\delta=10^\circ$

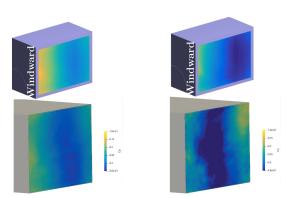
Error in experimental probes

Yaw angle interpolation

AutoCFD3

Barcelona Supercomputing Center

Case statistics


Reduced order models

Spectral elements code

Conclusions and future

Interpolated back pressures

- Room for improvement at the top-leeward corner
- General agreement with experimental results

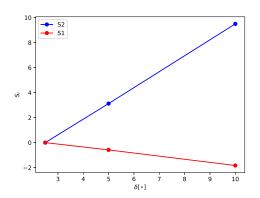
Yaw angle interpolation

AutoCFD3

Barcelona Supercomputing Center

Case statistic

Reduced order


models
Spectral

Spectral elements code in GPU

Conclusions and future

What about the rest of the angles?

 $S_i(\delta)$ are linear (at least) between $\delta=2.5^\circ$ and $\delta=10^\circ$

AutoCFD3

Barcelona Supercomputing Center

Spectral

elements code in GPU

1 Case statistics

3 Spectral elements code in GPU

4 Conclusions and future work

20/25

Spectral elements code in GPU

Results and code performance

AutoCFD3

Barcelona Supercomputing Center

Case statistics

Jase Statistics

Spectral elements code in GPII

Conclusions and future

Numerical approach

- Full compressible SEM with RK4 for time integration
- Entropy stable arguments for strong gradients
- Skew symmetric splittings

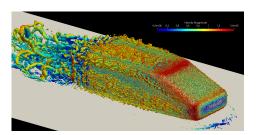


Figure: Third order 13M points mesh

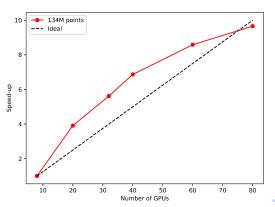
Spectral elements code in GPU

Results and code performance

AutoCFD3

Barcelona Supercomputing Center

Case statistics


Reduced orde

Spectral elements code in GPU

Conclusions and future

Performance and efficiency

- In GPU needs 4 times less of power than in CPU
- 0.032s/timestep with 134M points mesh in 80 GPU

AutoCFD3

Barcelona Supercomputing Center

Case statistic

Spectral elements cod

elements code in GPU

Conclusions and future work 1 Case statistics

2 Reduced order models

3 Spectral elements code in GPU

Conclusions and future work

AutoCFD3

Barcelona Supercomputing Center

Case statistics

Reduced o

Spectral elements code in GPU

Conclusions and future

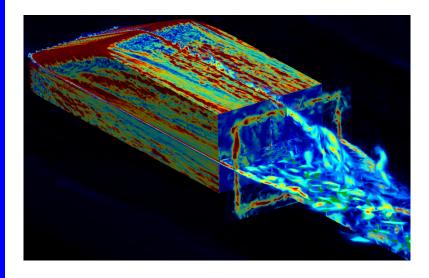
Conclusions

- Submitted results in agreement with experiments
- Reduced order models applications in CFD:
 - Flow field analysis
 - Data reduction
 - Results extrapolation
- Spectral elements code in GPU is more accurate and faster

Future work

- Perform better simulations with the new code
- Analyze deeply the results with ROMs
- Create a complete yaw angle interpolation model

Thank you very much for your attention


AutoCFD3

Barcelona Supercomputing Center

Case statistics

Reduced orde

Spectral elements code in GPII

